On The Empirical Effectiveness of Unrealistic Adversarial Hardening Against Realistic Adversarial Attacks

Salijona Dyrmishi, Salah Ghamizi, Thibault Simonetto, Yves Le Traon, Maxime Cordy

University of Luxembourg

Adversarial attacks against Machine Learning (ML)

Attack	Gross success rate	Actual success rate
Papernot	74.86%	0.00%
PGD	17.30%	0.00%
CW2	80.00%	0.00%

Tab 1. Success rate of traditional adversarial attacks against a credit scoring system

Unrealistic vs realistic adversarial examples

Unrealistic vs realistic adversarial examples

Design efforts

- Adapting existing attacks
- Creating new ones

Design efforts

- Adapting existing attacks
- Creating new ones

Engineering efforts

Domain specifics (i.e sandbox for malware)

Design efforts

- Adapting existing attacks
- Creating new ones

Engineering efforts

Domain specifics (i.e sandbox for malware)

Run time

• 3.8 to 22650 longer for attacks in this study

Design efforts

- Adapting existing attacks
- Creating new ones

Engineering efforts

Domain specifics (i.e sandbox for malware)

Run time

• 3.8 to 22650 longer for attacks in this study

Adversarial hardening

Improving ML model robustness by learning from adversarial examples

Hardening models with realistic adversarials is expensive ...

3 to 1K+ more than normal model training (depending on hardening strategy, dataset, model, attack)

Hardening models with realistic adversarials is expensive ...

RQ1: Can we use "cheap" unrealistic examples instead to protect against realistic attacks?

Use case selection

Application domains and learning tasks that have:

- 1. Constrained inputs
- 2. Open-source datasets
- 3. Open-source realistic attacks

Experimental settings

Text classification

- Transformer model
- Adversarial fine tuning
- 1 unrealistic & 2 realistic
- 3 datasets

Botnet detection

- FC model
- Adversarial training
- 1 unrealistic & 2 realistic
- 3 datasets

Malware detection

- RF model
- Adversarial training
- 2 unrealistic & 1 realistic
- 1 dataset

RQ1 results: Text classification

Can we use "cheap" unrealistic examples to harden models?

Fig 1. Robust accuracy (%) of the text-based model against PWWS realistic attack

RQ1 results: Botnet detection

Fig 2. Robust accuracy (%) of the botnet detection model against FENCE realistic attack

RQ1 results: Malware detection

Fig 3. Robust accuracy of the malware detection model against AIMED realistic attack

RQ1: Can we use "cheap" unrealistic examples instead to protect against realistic attacks?

Text classification

At certain level Up to 9.56%

Botnet detection

YES 100% protection

Malware detection

NO 0% protection

Further investigation

RQ2: Do larger budgets help unrealistic hardening?

RQ2 results: Text classification

Do larger budgets help unrealistic hardening?

Fig 4. Robust accuracy (%) of the text-based model against PWWS realistic attack when hardened with DeepWordBug attack for several epochs.

^{*}Targets represents the robust accuracy while hardening the model with realistic attack TextFooler for 5 epochs.

RQ2 results: Malware detection

Do larger budgets help unrealistic hardening?

Fig 5. Robust accuracy of the malware detection model against AIMED realistic attack

^{*}Targets represents the robust accuracy while hardening the model with 1500 realistic examples generated from AIMED.

RQ2: Do larger budgets help unrealistic hardening?

Further investigation

RQ2: Do larger budgets help unrealistic hardening?

RQ3: Which properties of adversarial examples influence the hardening results?

Which properties of adversarial examples influence the hardening results?

1. Direction of perturbation

$$sim(x_{adv_realistic}, x_{adv_unrealistic}) = \frac{\overrightarrow{X_{adv_realistic}} * \overrightarrow{X_{adv_unrealistic}}}{\parallel \overrightarrow{X_{adv_realistic}} \parallel * \parallel \overrightarrow{X_{adv_unrealistic}} \parallel}$$

Which properties of adversarial examples influence the hardening results?

1. Direction of perturbation

$$sim(x_{adv_realistic}, x_{adv_unrealistic}) = \frac{\overrightarrow{x_{adv_realistic}} * \overrightarrow{x_{adv_unrealistic}}}{\parallel \overrightarrow{x_{adv_realistic}} \parallel * \parallel \overrightarrow{x_{adv_unrealistic}} \parallel$$

2. Aggressiveness

Which properties of adversarial examples influence the hardening results?

1. Direction of perturbation

$$sim(x_{adv_realistic}, x_{adv_unrealistic}) = \frac{\overrightarrow{x_{adv_realistic}} * \overrightarrow{x_{adv_unrealistic}}}{\parallel \overrightarrow{x_{adv_realistic}} \parallel * \parallel \overrightarrow{x_{adv_unrealistic}} \parallel$$

3. Qualitative 2D embeddings (t-SNE)

2. Aggressiveness

Which properties of adversarial examples influence the hardening results?

1. Direction of perturbation

$$sim(x_{adv_realistic}, x_{adv_unrealistic}) = \frac{\overrightarrow{x_{adv_realistic}} * \overrightarrow{x_{adv_unrealistic}}}{\parallel \overrightarrow{x_{adv_realistic}} \parallel * \parallel \overrightarrow{x_{adv_unrealistic}} \parallel$$

3. Qualitative 2D embeddings (t-SNE)

2. Aggressiveness

4. Feature perturbation

Which properties of adversarial examples influence the hardening results?

1. Direction of perturbation

$$sim(X_{adv_realistic}, X_{adv_unrealistic}) = \frac{\overrightarrow{X_{adv_realistic}} * \overrightarrow{X_{adv_unrealistic}}}{\parallel \overrightarrow{X_{adv_realistic}} \parallel * \parallel \overrightarrow{X_{adv_unrealistic}} \parallel$$

3. Qualitative 2D embeddings (t-SNE)

2. Aggressiveness

4. Feature perturbation

RQ3 results

Which properties of adversarial examples influence the hardening results?

Fig 6. Average cosine similarity between realistic and unrealistic examples across datasets and attacks for each use case

RQ3 results

Which properties of adversarial examples influence the hardening results?

Fig 6. Average cosine similarity between realistic and unrealistic examples across datasets and attacks for each use case

Fig 7. **Average aggressiveness ratio** between realistic and unrealistic examples across datasets and attacks for each use case

Lessons learned

- 1. Unrealistic examples may help adversarial hardening under strict conditions; hence they are worth a try!
- 2. If unrealistic examples do not bring improvement even at a small scale, they will probably never do!
- **3.** Unrealistic hardening is helpful when the properties of unrealistic examples are similar to the ones of realistic examples.

Paving the way to new adversarial hardening methods with cheap unrealistic examples

S&P 2023, 23 May at 9am

