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Introduction

Adversarial attacks against ML

“Stop” Ca re.fuIIy crafted |
adversarial perturbations

Adversary’s strategy

minimize ||x — x'|]|
subject to h(x) # h(x")
where h is the target model
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Introduction Methodology Results Conclusion

Tabular ML models are prone to adversarial attacks too
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Tabular ML models are prone to adversarial attacks too
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Introduction

Methodology Conclusion

Tabular ML models are prone to adversarial attacks too
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Deep Generative Models (DGM)
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Introduction Methodology

Conclusion

Adversarial Deep Generative Models (AdvDGM)
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Xiao, Chaowei, et al. Generating adversarial examples with adversarial networks, IJCAI 2018
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Introduction Methodology Conclusion

Tabular DGM Failures

> Impossible!

Transactions All

TableGAN
6 8 10 12 14 16 6 8 10 12 14 16
Transactions April Transactions April

Domain constraint: Nr. Transactions all > Nr. Transactions past month
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Introduction Methodology Results Conclusion

Constrained Deep Generative Models (C-DGM)
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Introduction Methodology Conclusion

Constrained Deep Generative Models (C-DGM)

C-DGM when applied during training

P-DGM when applied during sampling

X3+520
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[ Generator
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Constraint
Layer
[ Discriminator ]4_

/ [ _{xl—zxz+JC3ZO} \ e

Required input: Set of constraints and a feature ordering
Output: Synthetic samples guaranteed to respect user defined constraints
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Conclusion

Constrained Deep Generative Models (C-DGM)
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TableGAN

C-TableGAN

10 12 14 16
Transactions April

6 8 10 12 14 16 6 8 10 12 14 16 6 8
Transactions April Transactions April

Model/Dataset URL WiDS LCLD Heloc FSP
WGAN 11.1£1.6 98.240.2 100.0+£0.0 57.0+13.0 70.7+8.3
TableGAN 49+14 96.442.4 6.1£0.9 45.64+16.3 71.6+£8.7
CTGAN 3.1+£2.6 99.940.0 11.842.7 41.64+12.1 74.3+£5.2
TVAE 3.0+0.7 99.940.0 3.9+0.5 55.5+1.4 66.4+3.0
GOGGLE 5.9+6.6 782+11.6 13.1+2.9 47.34+7.0 63.7+17.6

All C-models 0.0+0.0 0.0+0.0

0.0£0.0 0.0£0.0 0.0 £0.0

Table 1. Constraint Violation Rate: Percentage of generated samples
violating at least one constraint in the set of linear constraints.
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Introduction Methodology

Conclusion

Constrained Adversarial Deep Generative Models (C-AdvDGM)

L

C-AdvDGM when applied during training
P-AdvDGM when applied during sampling

Output: Adversarial samples guaranteed to respect user defined constraints
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Methodology

Introduction

Adversarial generation capability

Conclusion

Insights:

Adding the constrained layer during the training
(C-AdvDGM) or sampling (P-AdvDGM) increases
the performance of the attack in equal number
of times

Except WGAN and its constrained counterparts,
other models are not increasing the error rate of
the model

ASR?

Attack/Dataset ~ URL WiDS Heloc FSP

- 0.04 0.19 0.28 0.24

AdvWGAN 0.73+0.10 0.03+000 0.31x0.16 0.30+0.19
P-AdvWGAN 0.73+0.10 0.07+0.08 0.93+0.04 0.70+0.04
C-AdvWGAN 0.52+0.16 0.17+014 0.46+033 0.73+0.06
AdvTableGAN 0.14+0.08 0.03x0.00 0.15+004 0.08+0.03
P-AdvTableGAN 0.14+0.08 0.17+001 0.28+0.02 0.28+0.03
C-AdvTableGAN 0.09+0.01 0.124002 0.09+0.19 0.27+0.01
AdvCTGAN 0.01x0.00 0.01+0.01 0.18+0.03 0.02+0.03
P-AdvCTGAN 0.01x0.00 0.19+011 0.28+001 0.06+0.08
C-AdvCTGAN 0.02+0.00 0.16+001 0.37+0.06 0.32+0.02
AdvTVAE 0.00+0.00 0.00+0.00 0.18+0.01 0.06+0.02
P-AdvTVAE 0.00+0.00 0.12+0.01 0.32+002 0.23+0.01
C-AdvTVAE 0.01+0.00 0.10+0.00 0.60+0.04 0.28+0.01
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Impact on runtime

18

Insight:
C-AdvDGMs are at most 2.7 times slower during training
and 1.3 times during sampling compared to AdvDGMs.

2.7
2
1.6
1.3
I | i i 1
C-AdvWGAN C-AdvTableGAN C-AdvCTGAN C-AdvTVAE

M Training W Sampling

Fig 12. Relative run time compared to unconstrained
models averaged over four dataset
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Takeaway

Adding domain knowledge to DGMs brings improvements for adversarial attacks.
However, the effect of the layer during training or sampling needs further
investigation.
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Thank you!
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