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Tabular ML models are prone to adversarial attacks too
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Tabular ML models are prone to adversarial attacks too
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Constrained Deep Generative Models (C-DGM)
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Table 1. Constraint Violation Rate: Percentage of generated samples 
violating at least one constraint in the set of linear constraints.

Constrained Deep Generative Models (C-DGM)
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Constrained Adversarial Deep Generative Models (C-AdvDGM)
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Adversarial generation capability

Insights: 

1. Adding the constrained layer during the training 
(C-AdvDGM) or sampling (P-AdvDGM) increases 
the performance of the attack in equal number 
of times

ASR 

2. Except WGAN and its constrained counterparts, 
other models are not increasing the error rate of 
the model
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Impact on runtime

Insight: 

C-AdvDGMs are at most 2.7 times slower during training 
and 1.3 times during sampling compared to AdvDGMs. 
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Fig 12.  Relative run time compared to unconstrained 
models averaged over four dataset

Results ConclusionMethodologyIntroduction



19

Adding domain knowledge to DGMs brings improvements for adversarial attacks. 
However, the effect of the layer during training or sampling needs further 

investigation. 

Takeaway
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Thank you! 
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