DEEP GENERATIVE MODELS AS AN ADVERSARIAL ATTACK STRATEGY FOR TABULAR MACHINE LEARNING Salijona Dyrmishi¹, Mihaela Cătălina Stoian², Eleonora Giunchiglia³, Maxime Cordy¹ ¹University of Luxembourg, ²University of Oxford, ³Imperial College London #### Adversarial attacks against ML #### Adversary's strategy minimize ||x - x'||subject to $h(x) \neq h(x')$ where h is the target model **Problem space** Transaction 1 Transaction ... Transaction n **Client's history** | Max
trans. | Avg
trans. | Acc.
creation | Age | |---------------|---------------|------------------|-----| | 4000\$ | 2000\$ | 1 year | 22 | #### **Feature space** | Max | Avg | Acc. | Age | |---------|---------|----------|-----| | trans. | trans. | creation | | | 4000 \$ | 2000 \$ | 1 year | 22 | Domain properties acc_creation < age</pre> #### **Feature space** | Max | Avg | Acc. | Age | |---------|---------|----------|-----| | trans. | trans. | creation | | | 4000 \$ | 2000 \$ | 23 years | 22 | Domain properties $acc_creation < age$ #### **Feature space** | Λ | Unrealistic adversarial | |---|-------------------------| | | example | | Max | Avg | Acc. | Age | |---------|--------|----------|-----| | trans. | trans. | creation | | | 4000 \$ | 2000\$ | 23 years | 22 | **ML Model** Domain properties $acc_creation < age$ #### **Feature space** Realistic adversarial example | Max | Avg | Acc. | Age | |---------|---------|----------|-----| | trans. | trans. | creation | | | 4000 \$ | 2020 \$ | 1 year | 22 | **ML Model** Domain properties $acc_creation < age$ ## **Deep Generative Models (DGM)** ## **Adversarial Deep Generative Models (AdvDGM)** #### **Tabular DGM Failures** **Domain constraint:** *Nr. Transactions all > Nr. Transactions past month* #### **Constrained Deep Generative Models (C-DGM)** ## **Constrained Deep Generative Models (C-DGM)** **C-DGM** when applied during training P-DGM when applied during sampling ## **Constrained Deep Generative Models (C-DGM)** | Model/Dataset | URL | WiDS | LCLD | Heloc | FSP | |-----------------|---------------|-----------------|----------------|-----------------|-----------------| | WGAN | 11.1±1.6 | 98.2±0.2 | 100.0 ± 0.0 | 57.0±13.0 | 70.7±8.3 | | TableGAN | 4.9 ± 1.4 | 96.4 ± 2.4 | 6.1 ± 0.9 | 45.6 ± 16.3 | 71.6 ± 8.7 | | CTGAN | 3.1 ± 2.6 | 99.9 ± 0.0 | 11.8 ± 2.7 | 41.6 ± 12.1 | 74.3 ± 5.2 | | TVAE | 3.0 ± 0.7 | 99.9 ± 0.0 | 3.9 ± 0.5 | 55.5 ± 1.4 | 66.4 ± 3.0 | | GOGGLE | 5.9 ± 6.6 | 78.2 ± 11.6 | 13.1 ± 2.9 | 47.3 ± 7.0 | 63.7 ± 17.6 | | All C-models | 0.0±0.0 | 0.0±0.0 | 0.0±0.0 | 0.0±0.0 | 0.0 ±0.0 | **Table 1.** Constraint Violation Rate: Percentage of generated samples violating at least one constraint in the set of linear constraints. #### Constrained Adversarial Deep Generative Models (C-AdvDGM) **C-AdvDGM** when applied during training P-AdvDGM when applied during sampling ## Adversarial generation capability #### **Insights:** - Adding the constrained layer during the training (C-AdvDGM) or sampling (P-AdvDGM) increases the performance of the attack in equal number of times - 2. Except WGAN and its constrained counterparts, other models are not increasing the error rate of the model #### **ASR**↑ | Attack/Dataset | URL | WiDS | Heloc | FSP | |---|---|---|--|---| | - | 0.04 | 0.19 | 0.28 | 0.24 | | AdvWGAN | 0.73 ± 0.10 | $0.03\pm0.00 \ 0.07\pm0.08 \ 0.17\pm0.14$ | $0.31{\pm}0.16$ | 0.30 ± 0.19 | | P-AdvWGAN | 0.73 ± 0.10 | | $0.93{\pm}0.04$ | 0.70 ± 0.04 | | C-AdvWGAN | 0.52 ± 0.16 | | $0.46{\pm}0.33$ | 0.73 ± 0.06 | | AdvTableGAN P-AdvTableGAN C-AdvTableGAN | 0.14 ± 0.08
0.14 ± 0.08
0.09 ± 0.01 | 0.03 ± 0.00
0.17 ± 0.01
0.12 ± 0.02 | $0.15\pm0.04 \\ 0.28\pm0.02 \\ 0.09\pm0.19$ | 0.08±0.03
0.28 ±0.03
0.27±0.01 | | AdvCTGAN | 0.01 ± 0.00 | 0.01 ± 0.01 | $\begin{array}{c} 0.18{\scriptstyle \pm 0.03} \\ 0.28{\scriptstyle \pm 0.01} \\ 0.37{\scriptstyle \pm 0.06} \end{array}$ | 0.02±0.03 | | P-AdvCTGAN | 0.01 ± 0.00 | 0.19 ± 0.11 | | 0.06±0.08 | | C-AdvCTGAN | 0.02 ± 0.00 | 0.16 ± 0.01 | | 0.32 ±0.02 | | AdvTVAE | 0.00 ± 0.00 | 0.00 ± 0.00 | $0.18\pm0.01 \\ 0.32\pm0.02 \\ 0.60\pm0.04$ | 0.06 ± 0.02 | | P-AdvTVAE | 0.00 ± 0.00 | 0.12 ± 0.01 | | 0.23 ± 0.01 | | C-AdvTVAE | 0.01 ± 0.00 | 0.10 ± 0.00 | | 0.28 ± 0.01 | ## Impact on runtime #### **Insight:** C-AdvDGMs are at most 2.7 times slower during training and 1.3 times during sampling compared to AdvDGMs. **Fig 12.** Relative run time compared to unconstrained models averaged over four dataset Introduction Methodology Results Conclusion ### **Takeaway** Adding domain knowledge to DGMs brings improvements for adversarial attacks. However, the effect of the layer during training or sampling needs further investigation. # Thank you!