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Why do we need constraints?

Neural networks are data-driven models, which do not
account for background knowledge. 

❖ They can make predictions that violate the 
background knowledge.

❖ Neuro-Symbolic (NeSy) AI aims at addressing this 
issue by interlinking neural networks with symbolic 
reasoning. 

Deep Generative Model 
(DGM)



Constrained Deep Generative Models (C-DGM)

Background knowledge: expressed as linear 
inequalities capturing relations between continuous-
valued the tabular data features.

Our approach allows for injecting background knowledge 
into DGMs by building a differentiable Constraint Layer 
(CL) into their architecture which:

❖ guarantees the satisfaction of the constraints

❖ guarantees a possibly optimal output that 
minimally changes the initial DGM predictions

❖ can be used during training and/or at inference.



Computing CL: a two-step process

Step 1: compute a set of constraints 
for each variable in reverse λ order.

Step 2: compute the corrected value 
for each variable in λ ordering.

λ ordering:
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Constraint Layer’s Compatibility

Constraint Layer

Deep Generative Model

❖ GAN architectures
➢ WGAN [1]
➢ TableGAN [2]
➢ CTGAN [3]

❖ Variational Autoencoder architectures
➢ TVAE [3]

❖ GNN architectures
➢ GOGGLE [4] 

(using a Message Passing Neural Network)

❖ any other NN architecture…
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Standard DGMs do not satisfy requirements
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❖ CVR: percentage of generated samples violating at 
least one constraint in the set of linear constraints.

❖ Table: CVR for 5 DGM types and 6 datasets.



❖ The region violating the constraint is highlighted in red.
❖ The distribution of the samples generated by C-DGM matches 

more closely the one of the real data!

Qualitative performance
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Performance

❖ Table: the average performance over 6 datasets.
❖ Two standard measure: utility and detection.
❖ For each measure, 3 metrics: F1, wF1, AUC; here 

we report F1 only.

Background knowledge improves 
the synthetic data quality!



Sample generation time

❖ Table: the average result (in seconds) over 5 runs.
❖ 1000 samples were generated in each case.

The constrained layer introduces 
almost NO overhead to the 

sampling process!
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Code available at  https://github.com/mihaela-
stoian/ConstrainedDGM

Thank you for your attention!

https://github.com/mihaela-stoian/ConstrainedDGM
https://github.com/mihaela-stoian/ConstrainedDGM
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