

How Realistic Is Your Synthetic Data? Constraining Deep Generative Models for Tabular Data

Mihaela Cătălina Stoian*, Salijona Dyrmishi*, Maxime Cordy, Thomas Lukasiewicz, Eleonora Giunchiglia

University of Oxford

University of Luxembourg

University of Luxembourg

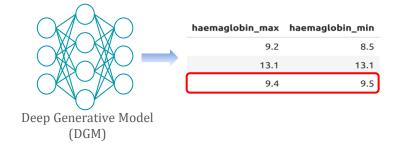
University of Oxford

Vienna University of Technology Vienna University of Technology

Why do we need constraints?

Neural networks are **data-driven** models, which do **not** account for **background knowledge**.

- They can make predictions that violate the background knowledge.
- Neuro-Symbolic (NeSy) AI aims at addressing this issue by interlinking neural networks with symbolic reasoning.

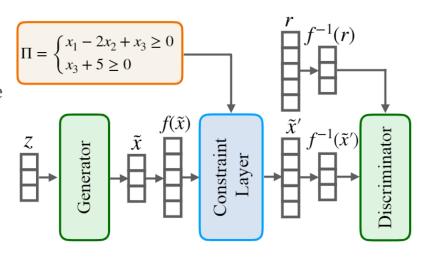


Constrained Deep Generative Models (C-DGM)

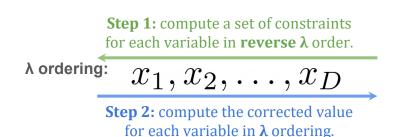
Background knowledge: expressed as linear inequalities capturing relations between continuous-valued the tabular data features.

Our approach allows for injecting background knowledge into DGMs by building a differentiable **Constraint Layer** (CL) into their architecture which:

- guarantees the satisfaction of the constraints
- guarantees a possibly optimal output that minimally changes the initial DGM predictions
- can be used during training and/or at inference.

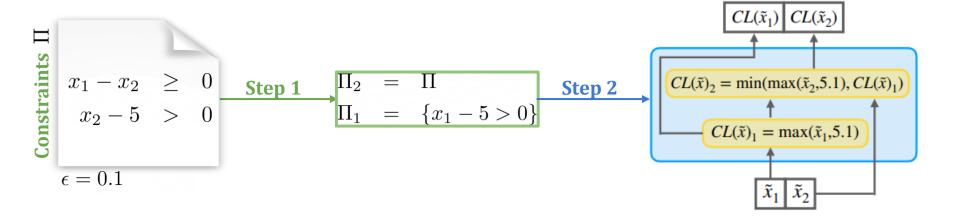


Computing CL: a two-step process

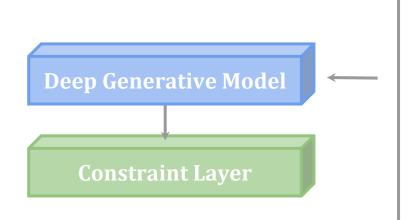


Example

$$\tilde{x}_1 = 7$$
 $\tilde{x}_2 = 3$
 $CL(\tilde{x})_1 = 7$
 $CL(\tilde{x})_2 = 5.1$



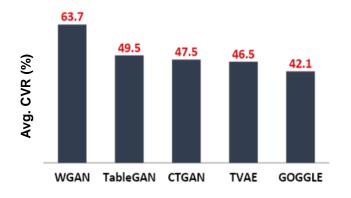
Constraint Layer's Compatibility



- GAN architectures
 - ➤ WGAN [1]
 - TableGAN [2]
 - ➤ CTGAN [3]
- Variational Autoencoder architectures
 - ➤ TVAE [3]
- GNN architectures
 - GOGGLE [4] (using a Message Passing Neural Network)
- any other NN architecture...
- [1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. In Proc. of ICML, 2017.
- [2] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim. Data synthesis based on generative adversarial networks. In Proc. of VLDB Endow., 2018.
- [3] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni. Modeling tabular data using conditional GAN. In Proc. of NeurIPS, 2019.
- [4] T. Liu, Z. Qian, J. Berrevoets, and M. van der Schaar. GOGGLE: Generative modelling for tabular data by learning relational structure. In Proc. of ICLR, 2022.

Standard DGMs do not satisfy requirements

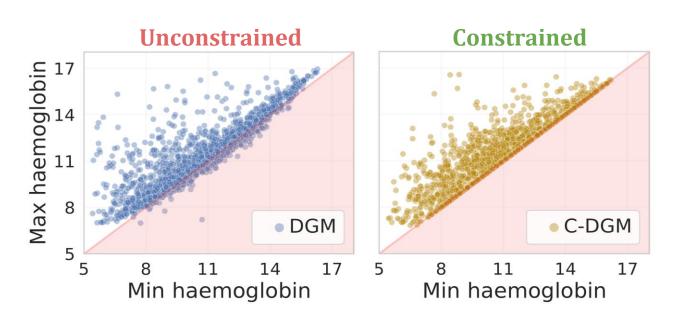
- **CVR**: percentage of generated samples violating at least one constraint in the set of linear constraints.
- **Table**: CVR for 5 DGM types and 6 datasets.

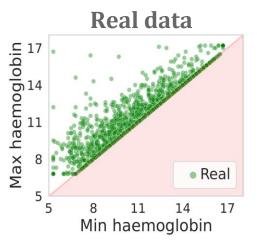


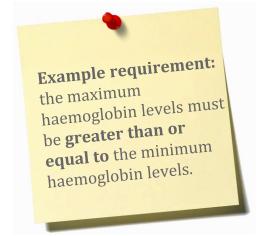
Model/Dataset	URL	WiDS	LCLD	Heloc	FSP	News
WGAN	11.1±1.6	98.2±0.2	100.0 ± 0.0	57.0 ± 13.0	70.7 ± 8.3	45.6±9.6
TableGAN	4.9 ± 1.4	$96.4{\pm}2.4$	6.1 ± 0.9	45.6 ± 16.3	71.6 ± 8.7	72.6 ± 5.3
CTGAN	3.1 ± 2.6	99.9 ± 0.0	11.8 ± 2.7	41.6 ± 12.1	74.3 ± 5.2	54.3 ± 10.1
TVAE	3.0 ± 0.7	99.9 ± 0.0	3.9 ± 0.5	55.5 ± 1.4	66.4 ± 3.0	50.3 ± 3.9
GOGGLE	5.9 ± 6.6	78.2 ± 11.6	13.1 ± 2.9	47.3 ± 7.0	63.7 ± 17.6	44.8 ± 7.2
All C-models	0.0±0.0	0.0±0.0	0.0±0.0	0.0±0.0	$\textbf{0.0} \pm \textbf{0.0}$	0.0±0.0

Qualitative performance

- The region violating the constraint is highlighted in **red**.
- The distribution of the samples generated by C-DGM matches more closely the one of the real data!







Performance

- Table: the average performance over 6 datasets.
- Two standard measure: utility and detection.
- For each measure, 3 metrics: F1, wF1, AUC; here we report F1 only.

	Utility (↑)	Detection (\downarrow)	
WGAN	0.463	0.945	
C-WGAN	0.483	0.915	
TableGAN	0.330	0.908	
C-TableGAN	0.375	0.898	
CTGAN	0.517	0.902	
C-CTGAN	0.516	0.894	
TVAE	0.497	0.869	
C-TVAE	0.507	0.868	
GOGGLE	0.344	0.926	
C-GOGGLE	0.409	0.925	

Background knowledge improves the synthetic data quality!

- **C-DGM models:** the DGM models equipped with CL.
- Our C-DGMs outperform standard DGMs in 9 out of 10 cases.
- Often, the **differences are non-negligible**, e.g., 6.5% for GOGGLE according to utility-F1.

Sample generation time

- * Table: the average result (in seconds) over 5 runs.
- ❖ 1000 samples were generated in each case.

	URL	WiDS	LCLD	Heloc	FSP	News
WGAN	0.02	0.03	0.01	0.00	0.00	0.01
C-WGAN	0.02	0.04	0.01	0.01	0.01	0.02
TableGAN	0.18	3.21	0.17	0.17	0.18	0.20
C-TableGAN	0.19	3.19	0.18	0.18	0.18	0.19
CTGAN	0.13	0.26	0.08	0.06	0.08	0.14
C-CTGAN	0.14	0.27	0.08	0.06	0.08	0.14
TVAE	0.12	0.27	0.06	0.06	0.06	0.12
C-TVAE	0.13	0.27	0.07	0.06	0.07	0.13
GOGGLE	0.71	3.99	9.91	0.16	0.06	2.01
C-GOGGLE	0.71	3.86	10.18	0.16	0.06	2.04

The constrained layer introduces almost NO overhead to the sampling process!

Out of 30 cases:

- 15 cases as fast as the unconstrained DGMs.
 - 14 cases at most 0.03s slower than the unconstrained DGMs.
 - only one case 0.27s
 slower than baseline!

Thank you for your attention!

Code available at https://github.com/mihaelastoian/ConstrainedDGM

Mihaela Cătălina Stoian*, Salijona Dyrmishi*, Maxime Cordy, Thomas Lukasiewicz, Eleonora Giunchiglia

