How do humans perceive adversarial text?

A reality check on the validity and naturalness of word-based adversarial attacks
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versarial attacks against Machine Learning (ML)
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Adversarial attacks against text-bpased models
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Adversarial attacks against text-bpased models
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Human in the loop

Phishing Fake news

Mon 4/3/2017 4:26 PM
Chris Colbert <chris.colbert@kpu.ca>
H.R MsVU

To Ken Munro

[EA sBC News (UK) 2 Follow
UK BCNewsUI

BREAKING: Buckingham Palace announces the
death of Queen Elizabeth Il at the age of 90.
Circumstances are unknown. More to follow.

Greetings,
You have a message from the Human Resources Department.
Click here to view your message

Copyright¥® 2017 Mount Saint Vincent University. All rights reserved.

http://sadfwx.com/redo/outlookweb/
outloockwebapp.html
Click or tap to follow link.

Johnatan Irons ¥ <% Follow

the only question left is will @femfreq be
raped first or Killed first or both or ?
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Desired properties of adversarial text
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Attack name/paper Type Evaluation Participants fﬁféﬁ\g
Validity Naturalness
S. D. G M
Hotflip (Ebrahimi et al., 2017) v X X X X 3 l
Alzantot(Alzantot et al., 2018) v X X X X 20 |
Input-reduction(Feng et al., 2018) v X X X X N/A l
Kuleshov(Kuleshov et al., 2018) v X X X X 5 |
Bae(Garg and Ramakrishnan, 2020) . v v X v X 3 2
Pwws(Ren et al., 2019) Word based v v X X X 6 l
Textfooler (Jin et al., 2019) v X X v 2 l
Bert-attack(Li et al., 2020b) v X X Vv X 3 l
Clare (Liet al., 2020a) v X X X X 5 2
PSO (Zang et al., 2019) v v X X X 3 l
Fast-alzantot (Jia et al., 2019) X X X X X 0 0
IGA (Wang et al., 2019) X X X X X 0 0
Textbugger (Li et al., 2018) v X & X X 297 l
Pruthi (Pruthi et al., 2019) Character based v X X X X N/A |
DeepWordBug (Gao et al., 2018) X X X X X 0 0
Morris et al. (2020a) Indenendent X v X v v 10 2

Table 1: Human evaluation performed on quality of adversarial examples by existing literature. The terms
abbreviated are Suspiciousness(S.), Detectability(D.), Grammaticality(G.), Meaning(M.). N/A indicates information l ‘ S"T
is not available. . " | —
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3 studies do not involve humans in their evaluation

Naturalness evaluated only through few criteria or not at all

Less than 10 participants

Effect of perturbation size and language proficiency not considered

AT
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3 studies do not involve humans in their evaluation

Naturalness evaluated only through few criteria or not at all

Less than 10 participants

Effect of perturbation size and language proficiency not considered
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An extensive study on human perception of adversarial texts

" &

378 participants 9 word-level attacks 3000 texts
(original and adversarial)
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Evaluated aspects

Validity

Naturalness

Suspiciousness Detectability

Grammaticality Meaningfulness
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Results: Validity

88.78%

71.86%

Original text Adversarial text

Fig 1. Percentage of correctly labelled texts according to their ground truth
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Naturalness: Suspicion

60.33%

> 45.28%
Detected perturbations on average

21.43%

Original text Adversarial text

Fig 2. Percentage of texts that were suspected to be computer altered
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Naturalness: Grammaticality

45.28%
Adversarial texts contain errors not
present in their original counterpart

73.00%

63.60%

44.60%
’ Yes

m No

® Not sure

Computer-altered

Fig 3. Percentage of adversarial texts labelled as computer-
altered according to grammar errors.
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Naturalness: Meaning

3.44

2.6

Original text Adversarial text

Fig 4. Meaning clarity rating on a 1-4 Likert scale

Suspiciousness

100
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40

20

1 2 3 4
Meaning clarity

Fig 5. Percentage of adversarial text suspected to be
computer altered according to meaning clarity.
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Extra investigation

- Individual attacks
- Language proficiency effect
- Perturbation size effect
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Evaluating the human perception of adversarial text requires extra
attention in NLP systems where a human is involved in the loop.

ACL 2023, 9-14 July
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